LOOKING FOR INTEGER AND RATIONAL ROOTS

A definition defines or explains what a term means. Theorems/Properties/"Facts" must be proven to be true based on postulates and/or already-proven theorems.

Definition 1

A rational expression (function) : $f(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials (functions) and $q(x) \neq 0$.

Definition 2

The domain of a rational expression is the set of values that when substituted into the expression produces a (real) number. Therefore, the domain of a rational expression must exclude the values that make the denominator zero (as we do not divide by zero).

Example 1

\rightarrow Find the domain of $R(x)=\frac{x}{x^{4}-4}$
Sol: $x^{4}-4=x^{4}-2^{2}=\left(x^{2}-2\right)\left(x^{2}+2\right)=(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}+2\right)$ so the domain of $R(x)$ is $x \in \mathbb{R} \mid x \neq \sqrt{2}$ and $x \neq-\sqrt{2}=$ $\mathbb{R}-\{-\sqrt{2}, \sqrt{2}\}$
\rightarrow find the domain of $R(t)=\frac{t^{3}+8}{t^{2}+6 t+8}$, simplify it and solve $R(t)=0$
Sol : $t^{2}+6 t+8 \neq 0$ Factor $t^{2}+6 t+8$ by finding two numbers whose product is 8 and whose sum is 6 . The factors of 8 that sum to 6 are 4 and 2 . So, $t^{2}+6 t+8=(t+4)(t+2)$
So, $t^{2}+6 t+8 \neq 0$ becomes $(t+4)(t+2) \neq 0$ iff $t \neq-4$ and $t \neq-2$
The domain of $R(t)$ is $t \in \mathbb{R} \mid t \neq-4$ and $x \neq-2=\mathbb{R}-\{-4,-2\}$
Simplification:
Using the factoring of the denominator we have $R(t)=\left(t^{3}+8\right) /((t+4)(t+2))$
Hint: Express $t^{3}+8$ as a sum of cubes: $t^{3}+8=t^{3}+2^{3}$: Factor the sum of two cubes using $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ Thus, $t^{3}+2^{3}=(t+2)\left(t^{2}-t 2+2^{2}\right)$ The rational expression becomes:

$$
\frac{t^{3}+8}{t^{2}+6 t+8}=\frac{(t+2)\left(t^{2}-2 t+4\right)}{(t+4)(t+2)}
$$

We can cancel the common terms in the numerator and denominator because they are non-zero.

Theorem 1

(Integer Root Test) Let $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ a polynomial with leading coefficient 1 and integer coefficients. If k is an integer root (i.e. $P(k)=0$), then k is a factor of a_{0}.

Proof: $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)(x-k)$ Two polynomials are equal if they their coefficients are identical. Their free terms (i.e. free of x) are $a_{0}=x_{1} \times x_{2} \times \cdot \times k$. Thus, k is a facor of a_{0}

Theorem 2

(Rational Roots Test) Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ a polynomial where $a_{n} \neq 0$ and the a_{i} are integers. If p and q are relatively prime integers and $x=\frac{p}{q}$ is a root (i.e. $f(p / q)=0$), then q is a factor a_{n} and p is a factor of a_{0}.

Proof (Optional Reading for the interested. Not done in class):
For simplicity let us prove for $\mathrm{n}=4$. The same proof holds for general n . By assumption, $0=f(p / q)=$ $a_{4}(p / q)^{4}+a_{3}(p / q)^{3}+a_{2}(p / q)^{2}+a_{1}(p / q)+a_{0}$. Multiplying the equation by q^{4} we find that $0=a_{4} p^{4}+a_{3} q p^{3}+$ $a_{2} q^{2} p^{2}+a_{1} q^{3} p+a_{0} q_{4}$. We rewrite as $a_{0} q_{4}=-a_{4} p^{4}-a_{3} q p^{3}-a_{2} q^{2} p^{2}-a_{1} q^{3} p=p\left(-a_{4} p^{3}-a_{3} q p^{2}-a_{2} q^{2} p-a_{1} q^{3}\right)$ Thus, p is a factor of $a_{0} q_{4}$. But p and q are relatively prime, so p divides a_{0}. Similarly, we can rewrite $0=a_{4} p^{4}+$ $a_{3} q p^{3}+a_{2} q^{2} p^{2}+a_{1} q^{3} p+a_{0} q_{4}$. to isolate $a_{4} p^{4}=-\left(a_{3} q p^{3}+a_{2} q^{2} p^{2}+a_{1} q^{3} p+a_{0} q_{4}\right)=-q\left(a_{3} p^{3}+a_{2} q p^{2}+a_{1} q^{2} p+a_{0} q_{3}\right)$. Thus, q divides $a_{4} p^{4}$. But p and q are relatively prime, so q divides a_{4}.

Example: Look for the rational roots of $p(x)=2 x^{3}+3 x-5$.
The constant term is 5 , so its factors are $\pm 1, \pm 5$. The leading coefficient is 2 , so its factors are $\pm 1, \pm 2$. $\operatorname{gcd}(2,5)=1$ so they are relatively prime numbers.

Using the Rational Roots Test Th. the possible solutions are in the set $\left\{ \pm 1, \pm \frac{1}{2}, \pm 5, \pm \frac{5}{2}\right\}$. Only $P(1)=0$.

Recall

The rational function defined by $y=f(x)=\frac{1}{x}$ has a restriction on its domain that $x \neq 0$ and its graph has a vertical asymptote at $x=0$

Homework

1. Let $p(x)=2 x^{4}-3 x^{2}-x+2$. What are its possible rational roots? Find the remainder when $p(x)$ is divided by $(x-3),(x+1),(x-1 / 2)$, and $(x+1)$.
2. Which of the following are factors of $p(x)=x^{3}-6 x^{2}+11 x-6 ?(x-2),(x+1)$, or $(x-1)$. Guess as many factors as possible and afterwards divide to write $p(x)$ as a product of factors.
3. Factorize in real numbers the quadratic $x^{2}+7 x-1$ and the quartic $x^{4}+7 x^{3}-2 x^{2}-7 x+1$.
4. Explain why we cannot factorize in real numbers the quadratic $x^{2}+2 x+4$. Factorize the polynomial $p(x)=x^{4}-2 x^{3}-8 x+16$.
5. Solve algebraically and graphically the following polynomial systems:
(a) $x^{2}+y^{2}=1, x y=1$
(b) $x^{2}+y^{2}=1, x y=1 / 2$
(c) $x^{2}+y^{2}=1, x y=1 / 4$
(d)* What can you say in general about $x^{2}+y^{2}=1, x y=k>0$
6. Solve algebraically and graphically the following polynomial system $x^{2}+y^{2}=1, x^{2}-4 x+y^{2}-2 y+5=4$
7.* Write a polynomial expression to solve the problem of a Macedonian army commander from 360BCE:
"In a confrontation a Macedonian company was advancing through the battle field as two squared phalanges with the commander in front of them. In front of the enemy they regrouped themselves as a new squared phalange with the commander included in the battle formation. As Alexander the Great advances he looses troops. What is the minimal number of soldiers that a Macedonian company has to have in order to perform their advancing and battle formations? "
8.* Find the remainder of $x^{81}+x^{49}+x^{25}+x^{9}+x$ by $x^{3}-x$.
9.* For which $n \geq 3$ is it possible to inscribe a regular n-gon in an ellipse that is not a circle? (The equation of an eclipse has degree 2 and equals $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$)
10.* Let $P(x)=x^{2018}+a_{2017} x^{2017}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients. Let four distinct integers $\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}$ such that $\mathrm{P}(\mathrm{k})=\mathrm{P}(\mathrm{m})=\mathrm{P}(\mathrm{n})=\mathrm{P}(\mathrm{l})=5$ then there is no integer k with $\mathrm{P}(\mathrm{k})=8$.
