Homework 10
 Inequalities

Math 7a

December 6, 2017

In general, we solve polynomial inequalities as follows:

- Find roots of the polynomial: $x_{1}, x_{2} \ldots$
- Roots $x_{1}, x_{2} \ldots$ divide the real line into several intervals. We then determine the sign of polynomial in each interval by plugging in an x value called test point from each interval.
- If there is a denominator that can equal 0 for some value of x, then we include this x among roots used in defining the intervals.
- If the inequalities are strict $(<$ or $>)$, then roots themselves are not included in the solution intervals. Otherwise (for \leq or \geq), the roots are included in the solution.
Example: on which intervals is $(x-4)(x+2)>0$ true?
- Find roots of the polynomial $f(x)=(x-4)(x+2): x_{1}=4$ and $x_{2}=-2$.
- Roots $x_{1}=4$ and $x_{2}=-2$ divide the real line into intervals: $(-\infty,-2),(-2,4)$ and $(4,+\infty)$.
- Picking a test point for each of the intervals, say
- for interval $(-\infty,-2): x=-3$,
- for interval $(-2,4): x=0$, and
- for interval $(4,+\infty): x=5$,
we determine what the sign of our polynomial is on each of the 3 intervals:
$-f(-3)=(-3-4)(-3+2)=7>0$,
$-f(0)=(-4)(2)=-8<0$,
$-f(5)=(5-4)(5+2)=7>0$
- Selecting only the intervals where our polynomial takes positive value, we obtain:

$$
x \in(-\infty,-2) \cup(4,+\infty)
$$

- Since the inequality is strict $((x-4)(x+2)>0)$, the roots $x_{1}=4$ and $x_{2}=-2$ are not included in the solution set.

Problems

1. Solve the inequalities:
(a) $x(x-\sqrt{3})(x+\sqrt{5}) \geq 0$
(b) $\left(x^{2}-1\right)(x+3)<0$
(c) $-3 x^{2}-x+4>0$
(d) $x^{3}+3 x^{2}+3 x+1 \leq 0$
2. Solve the inequalities paying attention to the denominators:
(a) $\frac{x-1}{x}<0$
(b) $\frac{x}{x-1}>0$
(c) $\frac{x}{x^{2}-10} \geq 0$
3. Graph the following equations:
(a) $x+y=2$

Hint: rearrange to $y=\ldots$ form.
(b) $y=x^{2}$
(c) $y=x^{2}-x$
(d) $y=x^{2}-5 x+6$

