Math 5b: Classwork 25 Homework #25 is due May 6-th.

Review Exponents Properties/Rules:

1.
$$a^{0} = \mathbf{1}$$

2. $a^{m} \cdot a^{n} = a^{m+n}$
3. $a^{m} \div a^{n} = \frac{a^{m}}{a^{n}} = a^{m-n}$
4. $(ab)^{n} = a^{n} \cdot b^{n}$
5. $(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}}$
6. $a^{n} = \frac{1}{a^{-n}}$
7. $(a^{m})^{n} = a^{m \cdot n}$

Recall: Square root of *a* (denoted \sqrt{a} is a number whose square is equal to a. For example: square root of 25 is 5, because $5^2 = 25$. We discussed that

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
$$\sqrt{a + b} \neq \sqrt{a} + \sqrt{b}$$

Square roots naturally appear in geometry:

Pythagorean Theorem: In a right triangle with legs a, b and hypotenuse c, one has

$$a^2 + b^2 = c^2$$
 or $c = \sqrt{a^2 + b^2}$

MATH 5B HOMEWORK 25

April 29, 2018

1. Simplify:

(a)
$$\left(\frac{5a^2b^5}{4a^3b^3}\right)^3$$
 = (b) $\left(2z^2 \cdot 3z^3 \cdot z\right)^2$ = (c) $\frac{(-ab)^8}{(ab)^2}$ =

- (d) $\left(\frac{3ab^3}{15b}\right)^2 \cdot \frac{75c}{a^2b^6} =$ (d) $\left(\frac{3a^5b^2}{21ab}\right)^2 \cdot \frac{7^4}{a^{16}b^2} =$
- 2. Solve equations: a) 7x = 2 b) 12x = 6 c) 7x = 14 d) 21x = 7e) $\frac{3}{8}x = \frac{1}{3}$ f) $\frac{11}{113}x = \frac{121}{3}$ g) $\frac{3}{4}(x + 8) = 10$ h) $\frac{1}{2}(x + 1) = x - 3$ i) $\frac{1}{2}x + \frac{1}{3}x = x - \frac{1}{12}$ j) $\frac{3x + 2a}{2a - 5x} = -1$
- 3. Open parenthesis, simplify:
- $3a(b + ac) c(3a^2 2) + 2ab =$

- **(2***a* **3)(2***a* + **3)** =
- 4. Simplify

$$\sqrt{\frac{4^2}{5^{10}}} =$$

 $\sqrt{12} =$

5. Find legs....

Find the length of legs, if hypotenuse is 10?

