Math 5b: Classwork 17
Homework \#17 is due February 25-th

Geometry: Angles

$\angle \alpha=\angle \alpha-$ opposite $\angle \alpha+\angle \beta=180^{\circ}-$ on a straight line,

Or complementary angles

$\angle 1=\angle 3=$ alternate internal angles
$\angle 1=\angle 2=$ corresponding angles
$\angle 4=\angle 2=$ alternate exterior angles

From both these pieces of information we can show that the sum of angles in a triangle is always 180°.

Homework

1. On the picture, a and b, which are parallel to each other, are intersected by line c. What are the relationships:
(a) $\angle 3$ and $\angle 5$
(b) $\angle 2$ and $\angle 8$
(c) Prove that $\angle 4+\angle 5=180^{\circ}$.
2. In the same picture,

(a) if $\angle 7=65^{\circ}$, find: $\angle 1, \angle 3, \angle 1+\angle 6$
(b) If you know that $\angle 7=\angle 1$, prove that $*: \angle 1=\angle 3$ and $\angle 5=\angle 1$
(* or say why the angles will be equal)
3. Intersecting at point B on triangle $A B C$ is drawn line DS, such that DS is parallel to AC. Prove that (or say why the angles will be equal):
(a) $\angle \mathrm{ACB}=\angle \mathrm{SBC}$
(b) $\angle \mathrm{CAB}=\angle \mathrm{DBA}$
(c) $\angle \mathrm{CAB}=\angle \mathrm{SBK}$
(d) If $\angle \mathrm{CAB}=40^{\circ}$ and $\angle \mathrm{BCA}=60^{\circ}$, find angles $\angle \mathrm{ABD}$ and $\angle \mathrm{SBC}$
4. In triangle $\mathrm{ABC}, \angle \mathrm{A}=35^{\circ}, \angle \mathrm{B}=55^{\circ}$,
 prove that this triangle is right-angled.
5. What type of triangle has one angle equal to the sum of the other two?
6. Find each of the outside angles of a right-triangle, if one of its angles is 58°.
