1. Solve:
a. $-4 \frac{2}{3}+\left(-1 \frac{1}{3}\right)=$
b. $-12 \frac{5}{7}+\left(-4 \frac{4}{7}\right)=$
c. $\left(-8 \frac{2}{3}\right)+\left(-9 \frac{2}{3}\right)=$
2. A musketeer has three hats, four tabards, and two pairs of boots. How many different costumes can he wear? (tabard is a sleeveless jerkin consisting only of front and back pieces with a hole for the head.

3. In a restaurant you can order a cheese platter for $\$ 15$. You can choose 3 different kinds of cheeses out of 15 . How many ways are there to create such a cheese platter?
4. I have a choice of 20 new books to read during my 5 day vacation. I want to read 1 book every day. How many ways are there to choose these 5 books? (the order does not matter)
5. There are 20 students in the $4^{\text {th }}$ grade math team. How many ways are there to choose a team of 4 students from the class of 20 for the Suffolk County Olympiad?
6. Open the parenthesis and simplify:

$$
\begin{array}{ll}
8(5 x-3)= & 5(\mathrm{a}+2 \mathrm{~b}+3 \mathrm{c})= \\
6(3 \mathrm{c}-5 \mathrm{~d}+6)= & -3\left(-2 \mathrm{c}+3 \mathrm{~b}+4 \mathrm{a}^{2}\right)= \\
x^{2}\left(5 x-3^{6}-x^{5}\right)= & (3+x)(x-8)=
\end{array}
$$

7. Write the following series of arithmetic operations and find the final answer:
1) Raise $1 \frac{1}{2}$ to the power of 3 .
2) From the result of step 1 subtract $1 \frac{3}{4}$.
3) Divide the resulting difference by $4 \frac{7}{8}$.
4) Divide $2 \frac{2}{3}$ by $10 \frac{1}{2}$.
5) Multiply the result of step 4 by $1 \frac{5}{16}$.
6) Subtract the result of step 5 from the result of step 3
8. On a grid (graph) paper draw the coordinate system. Mark the points $\mathrm{A}(0 ; 2), \mathrm{B}(2 ; 6)$, $\mathrm{C}(8 ; 8), \mathrm{D}(6,4)$. Draw the quadrilateral. Find the coordinate of the intersection of the diagonals. Use ruler! Be neat!
