Positive and negative numbers. Absolute value of a number.

$$
\left\{\begin{array}{lr}
|a|=a, & \text { if } a \geq 0 \\
|a|=-a, & \text { if } a<0
\end{array}\right.
$$

1. Positive or negative value of m will make the following equalities true statements?

$\|m\|=m$	$m=-m$
$\|m\|=-m$	$m+\|m\|=0$
$-m=\|-m\|$	$m+\|m\|=2 m$
$m=\|-m\|$	$m-\|m\|=2 m$

2. Numbers a, b and c are marked on the number line below:

Which of the following statements are true?
a. $a \cdot b<b$ or $a \cdot b>b$
b. $a \cdot b \cdot c<a$ or $a \cdot b \cdot c>a$
c. $-a \cdot c<c$ or $-a \cdot c>c$

3. Rewrite without the parenthesis:

a. $\quad a-(b-(c+4))=$
b. $x-(3-(x+6))=$
c. $a-(a-(a-10))=$
d. $c-(c-(c-d))=$

Complex fractions.

Complex fractions are formed by two fractional expressions, one on the top and the other one on the bottom, for example:

$$
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{7}{9}-\frac{2}{5}}
$$

The fraction bar is a just another way to write the division sign, so we can re-write:

$$
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{2}{3}+\frac{1}{4}}=\left(\frac{1}{2}+\frac{1}{3}\right) \div\left(\frac{2}{3}+\frac{1}{4}\right)
$$

It is easy to simplify a complex fraction:

$$
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{2}{3}+\frac{1}{4}}=\left(\frac{1}{2}+\frac{1}{3}\right) \div\left(\frac{2}{3}+\frac{1}{4}\right)=\frac{\frac{3}{6}+\frac{2}{6}}{\frac{8}{12}+\frac{3}{12}}=\frac{\frac{5}{6}}{\frac{11}{12}}=\frac{5}{6} \div \frac{11}{12}=\frac{5}{6} \cdot \frac{12}{11}=\frac{5}{1} \cdot \frac{2}{11}=\frac{10}{11}
$$

Exercises.

Compute:
$\frac{6}{1-\frac{1}{3}}=$
$\frac{1-\frac{1}{6}}{2+\frac{1}{6}}=$
$\frac{\frac{1}{2}+\frac{3}{4}}{\frac{1}{2}}=$
$\frac{\frac{7}{10}+\frac{1}{3}}{\frac{7}{10}+\frac{1}{2}}=$

Solve the following equations:

$$
\begin{aligned}
& 3-\frac{5}{7} t=1-\frac{3}{7} t \\
& \frac{1}{8} u-2=\frac{5}{8} u+1
\end{aligned}
$$

GRAPHS

A graph (G) is a mathematical model consisting of a finite set of vertices (V) and a finite set of edges (E). The vertices, represented by points, may be connected by edges, represented by line segments.
.Lines of the graphs- Segments
Points where segments intersect- VERTICES ("Vertex" in singular) or NODES
The number of segments originating from a vertex is called THE DEGREE OF

Graph THE VERTEX. In other words, the degree of a node is the number of edges touching it.

A vertex that has degree equal to zero is called an isolated vertex.
The old town of Königsberg has seven bridges:

Can you leave your home, take a walk through the town, visiting each part of the town and returning home crossing each bridge only once?

Euler (pronounced as [Oiler]) showed that the possibility of a walk through a graph, traversing each edge exactly once, depends on the degrees of the nodes.

An Eulerian cycle, Eulerian circuit in a graph is a cycle that uses each edge exactly once and it ends in the vertex from which it started. If such a cycle exists, the graph is called Eulerian.

An Eulerian path uses each edge exactly once but it ends in a different vertex

A graph can be drawn with a single line if and ONLY if:

1. The graph is connected
2. The number of vertices with the odd degrees in
 the graph are 0 or 2

\# of ODD Vertices	Implication (for a connected graph)
0	There is at least one Euler Circuit.
2	There is no Euler Circuit but at least 1 Euler Path.
more than 2	There are no Euler Circuits or Euler Paths.

Which of the Graphs have Eulier path and wich have Euler's Circuit?

1. G_{1}

2. G_{2}

3. G_{3}

4. G_{4}

5. G_{5}
